

Fun with $\text{sinc}(t)^1$

1 Introduction

The unnormalized sinc² function, also called sampling function, is defined as

$$
\operatorname{sinc}(x) = \frac{\sin(x)}{x}.
$$

Using L'HÔPITAL's rule, the value of $sinc(0)$ can be determined easily since the numerator and denominator have the limit 0 and the first derivative of both also exists:

$$
\lim_{x \to 0} \operatorname{sinc}(x) = \lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1.
$$

Figure 1 shows the graph of $sinc(x)$ and its normalised variant.³

This function occurs in many contexts $-$ its normalized variant is the F_{OURIER} transform of the rectangle function⁴

$$
\text{rect}\left(\frac{t}{a}\right) = \begin{cases} 0 & \text{if } |t| > \frac{a}{2} \\ \frac{1}{2} & \text{if } |t| = \frac{a}{2} \\ 1 & \text{if } |t| < \frac{a}{2} \end{cases}
$$

, thus it also describes the amplitudes of light diffracted at a slit, it even has connections to prime numbers Riemann's ζ-function, it can be used to reconstruct signals from sampling data, etc.

This application note shows two approaches for generating $\operatorname{sinc}(x)$ for $x > 0$ (and not too large). In both cases x is replaced by the machine time t, which is generated by integrating over a (small) constant.

 1 The author would like to thank Dr. CHRIS GILES for fruitful discussions and his meticulous proofreading.

²The *normalized sinc* function is defined as $\text{sinc}x = \frac{\sin(\pi x)}{\pi x}$.

 3 Source: By GEORG-JOHANN - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php? curid=17007237.

 4 Also called the HEAVISIDE Pi function.

Figure 1: Graph of $sinc(x)$

2 Direct approach

The first approach is straightforward: Generate $sin(t)$ and divide it by t. Mathematically this works fine, although the division may misbehave for very small values in an analog computer.

Generating a sine function is basically the "hello world" of analog computing and typically done by solving $\ddot{y} = y$. Since the numerator t is limited to the interval [0, 1], there is no need to employ any form of amplitude stabilisation.

The straightforward implementation is shown in figure 2, while figure 3 shows the corresponding result. The division is implemented using an open amplifier with a multiplier in its feedback path.⁵

⁵Cf. [ULMANN 2023, p. 76]. It may be necessary to add a small capacitor (around 100 pF maximum) between the output of the amplifier and its summing junction to stabilise this subcircuit.

Figure 2: Analog computer setup for equation (2)

In order to obtain a number of oscillations of $sinc(t)$ as the output t, should run from some small ε to about 100, which is obviously impossible, given the machine interval of $[-1, 1]$. The "trick" is to restrict t to $[\varepsilon, 1]$ an upscaling it during division. Of course, the denominator cannot be $100t$ as this would exceed the machine unit interval. Instead, the numerator is multiplied by $\frac{1}{100}.$ The integrator yielding t should start at a very small positive value instead of 0.

As one can see, the result deviates substantially from $sinc(t)$ near 0 as a division of the form $\frac{\varepsilon_1}{\varepsilon_2}$ with small ε_i not necessarily yields a result close to 1 .

Figure 3: Result of the program shown in figure 4

3 Indirect approach

This second approach is a little bit more involved as it is based on deriving a differential equation with $\text{sinc}(\tau)$ as its solution (given suitable initial conditions). To derive such a DEQ we need the first and second derivatives:

$$
y = \frac{\sin(t)}{t}
$$

\n
$$
\dot{y} = \frac{\cos(t)}{t} - \frac{\sin(t)}{t^2}
$$

\n
$$
\ddot{y} = -\frac{\sin(t)}{t} + 2\frac{\sin(t)}{t^3} - 2\frac{\cos(t)}{t^2}
$$
\n(1)

Combining these three equations the following DEQ can be derived

$$
t\ddot{y} + 2\dot{y} + ty = 0,
$$

$$
\ddot{y} = -\frac{2\dot{y} + ty}{t}.
$$
 (2)

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024

yielding

The corresponding two initial conditions can be derived in a straightforward way:

$$
y(0) = \lim_{t \to 0} \frac{\sin(t)}{t} = 1
$$

as shown above. Visual inspection suggests $\dot{y}=0$ which can be shown easily using short TAYLOR approximations for $sin(t)$ and $cos(t)$:

$$
\sin(t) = t - \frac{t^3}{6} + \mathcal{O}(t^4)
$$
 (3)

$$
\cos(t) = 1 - \frac{t^2}{2} + \frac{t^4}{24} + \mathcal{O}(t^5)
$$
\n(4)

Using (1) in conjunction with (3) and (4) yields

$$
\dot{y}(0) = \lim_{t \to 0} \frac{\cos(t)}{t} - \frac{\sin(t)}{t^2} \approx \lim_{t \to 0} \frac{1}{t} - \frac{t}{2} + \frac{t^3}{24} - \frac{1}{t} + \frac{t}{6} = 0.
$$

Using (2) with $y(0) = 1$ and $\dot{y} = 0$ can be directly transformed into an analog computer setup as shown in figure 4. The corresponding result is shown in figure 5. t is created and treated exactly as described above.

Figure 4: Analog computer setup for equation (2)

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024

4 Conclusion

While both solutions do not behave perfectly near 0, the second approach yields a much better result than the straightforward solution. The difference between both $sinc(t)$ implementations is shown in figure 6. The overall setup, implementing both approaches at once, is shown in figure 7.

Figure 6: Difference between the results obtained by both methods

Figure 7: Setup of both approaches to computing $sinc(t)$ on THE ANALOG THING

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024

Happy analog computing!

References

[ULMANN 2023] BERND ULMANN, Analog and Hybrid Computer Programming, 2nd edition, DeGruyter, 2023